Heteroatom Rearrangements. S,N, O,N, and N,N Double Rearrangements. X-Ray Molecular Structure of 5-Cyano-6-methylthio-2,3-diphenyl-pyrimidin-4(3H)-one

Masataka Yokoyama,* a Hidekatsu Hatanaka, atsuhi Sasaki, a Tadashi Shiraishi, a Katsushi Kumata, ${ }^{a}$ Kayoko Sakamoto, ${ }^{a}$ and Koreharu Ogata ${ }^{b}$
${ }^{a}$ Department of Chemistry, Faculty of Science, and ${ }^{\text {b }}$ Analytical Center, Chiba University, Yayoi-cho, Chiba City, 260, Japan

New heteroatom rearrangements are reported; 'S,N, O,N, and N,N double rearrangements' take place when acrylonitriles, substituted at C-3 by two heteroatom groups (MeS or MeSe, and SH, OH, or NHPh), condense with aromatic carboxylic acids in the presence of dehydrating agents such as PPE, PPSE, phosphoryl trichloride, and propylphosphonic acid cyclic anhydride. The key step of this reaction is the acylation of the cyano group of the acrylonitrile, followed by transfer of the heteroatom group (SMe or SeMe).

A study of the synthesis of 1,3-thiazin-4-ones led to our discovery of the ' S, N double rearrangement.' This novel reaction, involving a simultaneous interchange of sulphur and nitrogen atoms, was observed when 2-cyano-3-mercapto-3-
(methylthio)acrylamide (1) condensed with benzoic acid in the presence of polyphosphate ester (PPE). ${ }^{1.2}$
The elucidation of the reaction mechanism by means of ${ }^{13} \mathrm{C}$ labelling and crossover experiments revealed that (i) benzoic

\dagger HMO Calculations show the following electron density for compounds (1), (2), and (3a). The values in parentheses show the HOMO electron density.

acid is activated by PPE to generate a benzoyl-cation-like species, (ii) this species is responsible for the benzoylation of cyano group in compound (1), (iii) a methylthio group in compound (1) transfers to the carbon atom of the benzoylated cyano group, (iv) a 1,3-oxazine ring is formed by cyclization, and (v) a carbamoyl group is dehydrated (see Scheme 1). ${ }^{3}$
lt is a key step of this reaction that in 'soft benzoyl cation' generated by PPE attacks exclusively on the nitrogen atom of the cyano group, which is considered to be a soft nucleophilic site' in amide ($\mathbf{1}$). \dagger

As an extension of the S, N double rearrangement, the use of 2-cyano-3-hydroxy-3-(methylthio)acrylamide (2) [O -analogue of (1)] and 3-anilino-2-cyano-3-(methylthio)acrylamide (3a) [N-analogue of (1)] under the same conditions could give rise to the first examples of ' O, N double rearrangement' and ' N, N double rearrangement,' respectively. ${ }^{4}$ Further, we found that S-methyl cyanothioacetates (4), 3-anilino-3-methyl-
thioacrylonitriles (5), and 2-cyano-3-mercapto-3-(methylseleno)acrylamide (6) [Se-analogue of (1)] could also undergo the present heteroatom rearrangement. Herein we describe the synthesis of compounds (2)-(6) and the structure determination of their heteroatom-rearranged products.

Results and Discussion

O, N Double Rearrangement.-Compound (2) was prepared from the reaction of $S S$-dimethyl dithiocarbonate with cyano-

Table 1. Preparation of oxazinones (7)

Cmpd.	Ar	Yield (\%)	Cmpd.	Ar	Yield (\%)
(7a)	phenyl	77	(7d)	2-naphthyl	68
(7b)	4-methoxyphenyl	79	(7e)	4-nitrophenyl	56
(7c)	4-chlorophenyl	74	(7f)	2-furyl	49

results of the following conversion reaction. Compound (7a) was allowed to react with phenylhydrazine in chloroform to give 5-cyanomethyl-1,3-diphenyl-1 H-1,2,4-triazole ${ }^{6}$ with loss of carbon dioxide and methanethiol (see Scheme 2). Further, the presence of i.r. stretching bands ($1730-1750 \mathrm{~cm}^{-1}$) characteristic of lactones also support the assigned structures (7).

On the other hand, compound (2) reacted with beazoyl chloride in the presence of pyridine to give the pyridinium salt (8) of N -benzoyl-2-cyano-3-hydroxy-3-(methylthio)acrylamide, which was, in turn, converted into N-benzoyl-2-cyano-3-hydroxy-3-(methylthio)acrylamide (9) on treatment with mineral acid (Scheme 3). Attempted ring closure of compound (9) to give the 1,3 -oxazin-4-one derivative (10) was unsuccessful. However, it is noteworthy that compound (9), when treated with PPSE, gave rise to the oxazinone (7a). This fact suggests that compound (9) does not give compound (10) directly by dehydrative ring-closure, but instead gives (7a) via a dehydrated species (11) and then a rearranged species (12) because of the weak nucleophilicity of the hydroxy group (Scheme 4).

Next, compounds (4) were synthesized from the reaction of the corresponding nitriles with $S S$-dimethyl dithiocarbonate. The structures of compounds (4) were assigned as S-methyl cyanothioacetates based on spectral evidence (see Experimental section). Compounds (4) condensed with benzoic acid under the same conditions as described for the formation of compounds (7) to give the corresponding O, N rearranged products (13) in low yields. The results are shown in Table 2.
acetamide and was allowed to react with benzoic acid in the presence of PPE in the usual way. ${ }^{2}$ An expected compound, (7a), 5-cyano-4-methylthio-2-phenyl-1,3-oxazin-6-one, was obtained in fair yield (50%). The reaction was then carried out under more drastic conditions ($120^{\circ} \mathrm{C}$) using polyphosphoric trimethylsilyl ester (PPSE) ${ }^{5}$ which could be employed without decomposition at high temperature. Thus a satisfactory result was obtained (see Table 1). The starting compound (2) exists in the E-form due to the hydrogen bond between the carbamoyl and hydroxy groups (see Experimental section).

The structure of the products (7) was determined from the

Scheme 2.

Scheme 3. Reagents: i, PhCOCl, pyridine; ii, H^{+}

Scheme 4.

Table 2. Preparation of oxazinones (13) from thioesters (4)

Table 3. Preparation of pyrimidinones (14) and (15)

In the present reaction the use of phosphoryl trichloride and propylphosphonic acid cyclic anhydride ${ }^{7}$ as condensation reagents gave similar results (see Experimental section).

N, N Double Rearrangement.-Compound (3a), 3-anilino-2-cyano-3-(methylthio)acrylamide, was prepared by the reaction of 2-cyano-3,3-bis(methylthio)acrylamide ${ }^{8}$ with aniline. The condensation of compound (3a) with benzoic acid in the

Scheme 5. Reagents: i, $\mathrm{PhNH}_{2} ; \mathrm{ii}, \mathrm{PhCO}_{2} \mathrm{H}, \mathrm{PPSE}$; iii, NaH , then PhCOCl; iv, PPSE; v, $10 \% \mathrm{NaOH}$
presence of PPSE at $150-160^{\circ} \mathrm{C}$ gave a rearranged product (14a), 5-cyano-6-methylthio-2,3-diphenylpyrimidin-4(3H)-one, together with an unrearranged product (15a), 5-cyano-6-methylthio-1,2-diphenylpyrimidin-4(1H)-one. In a similar manner, some substituted benzoic acids were converted into the corresponding pyrimidinones (14) and (15). The results are summarized in Table 3.

The structures of products (14) and (15) were assigned from the results of the following conversion reactions (Scheme 5).

Therefore, the conversion of 3-anilino-2-cyano-3-methylthioacrylonitrile (16) into compound (14a) suggests that the pyrimidinone (14a) has a rearranged structure; dehydrative ring-closure of 3 -anilino- N -benzoyl-2-cyano-3-(methylthio)acrylamide (17) gave an unrearranged product (15a); alkaline hydrolysis of (14a) afforded 3-benzamido-2-cyano-3-methyl-

Figure. ORTEP diagram of compound (14a) showing 50% probability ellipsoids for all non-hydrogen atoms
thio- N-phenylacrylamide (18) [a positional isomer of (17)], which, in turn, could be recyclized to the pyrimidinone (14a) in the presence of PPSE. The structure of compound (14a) was determined unequivocally by a single-crystal X-ray diffraction study,* and the Figure illustrates its ORTEP drawing. Detailed crystallographic results are given in the Experimental section.

Monitoring of the reaction of compound (3a) with benzoic acid by t.l.c. revealed that the pyrimidinone (14a) was produced via a dehydrated compound (16). Therefore, the present reaction is considered to form compound (16) and (17) competitively (Scheme 6).

Table 4. Preparation of pyrimidinones (19) from nitriles (5)

pared by the same method as described for the preparation of (3a) by using, respectively, n-butylamine and ammonium benzoate in place of aniline. However, compounds (3b) and (3c) did not undergo the present cyclization reaction, perhaps because of the strong basicity of the butylamino and amino groups.

Continuing our search for the limitations of the present reaction, we intended to apply this reaction of compounds (5), which were prepared (as $E: Z$ mixtures) from the reaction of the corresponding nitriles with phenyl isothiocyanate. When nitriles (5) condensed with benzoic acid under the same conditions as mentioned above, the corresponding pyrimidines (19) were obtained in moderate yield. The results are shown in Table 4.

In this reaction three dehydrating agents containing phosphorus were employed. A phosphoryl trichloride solution containing amide (3a) and benzoic acid was refluxed for 6 h to give only the pyrimidinone (14a) in 43% yield, with no isomer (15a).

Scheme 6.

Although it is not clear why N, N double rearrangement is accompanied by a side-reaction forming the unrearranged product (15a), the result may be explained on the hypothesis that the hydrogen bond between the carbamoyl and imino groups increases the nucleophilicity of the carbamoyl group [compare the chemical-shift values of amino protons in the carbonyl groups: $\delta_{H} 6.42$ in (3a); 7.5 in (2); 8.0 in (1)].

Next, 3-butylamino-2-cyano-3-(methylthio)acrylamide (3b) and 3-amino-2-cyano-3-(methylthio)acrylamide (3c) were pre-

[^0]The use of diethylphosphoryl cyanide (DEPC) ${ }^{9}$ gave an unsatisfactory result; 3-anilino-3-methylthioacrylonitrile \dagger (33%) and recovered (3a) (63%). The reaction of amide (3a) with benzoic acid in the presence of propylphosphonic acid cyclic anhydride afforded many products; (14a) $(64 \%),(15 a)(8 \%),(16)$ (20%), and (18) (trace).

[^1]Table 5. Preparation of thiazinones (21)

(6)

S,N Double Rearrangement using Se Analogue of (1).-A key step of the present heteroatom rearrangement is the transfer of the methylthio group. In order to examine the transfer of a methylseleno group, we prepared compound (6), which was derived from the reaction of cyanoacetamide with SeSedimethyl thiodiselenocarbonate ${ }^{11}$ in the presence of sodium hydride. Compound (6) condensed with benzoic acid under the same conditions as described in the N, N double rearrangement
methaneselenol by the same mechanism as shown in Scheme 2. In the case of the condensation with benzoic acid, compound (20a) was isolated and could be quantitatively converted into its isomer (21a) with refluxing ethanol owing to the difference of stability in the heteroaromatics. Further, an unrearranged product (22), 5-cyano-6-methylseleno-2-phenyl-1,3-thiazin-4one, was prepared by reaction of the acrylamide (6) with benzoyl chloride in the presence of pyridine.

In conclusion, heteroatom rearrangements such as $\mathrm{S}, \mathrm{N}, \mathrm{O}, \mathrm{N}$, and N, N double rearrangements, take place when acrylonitriles, substituted at C-3 with two heteroatom groups (MeS or MeSe, and SH, OH, or NHPh), condense with aromatic carboxylic acids in the presence of dehydrating agents such as PPE, PPSE, POCl_{3}, and propylphosphonic acid cyclic anhydride. The present reaction can be summarized by Scheme 7 according to A. I. Meyers. ${ }^{11}$

The characteristic feature of our reaction is the transfer of the heteroatom (S or Se) shown as Nu . A similar reaction has been observed in organoboron chemistry (Scheme 8). ${ }^{12}$

The extension of this reaction to aliphatic carboxylic acids is under investigation in our laboratory.

Scheme 7. E, Electrophilic site; Nu, nucleophilic site

Scheme 8. Reagent: i, PhCOCl
section to give 5-cyano-4-methylseleno-2-phenyl-1,3-thiazin-6one (21a) via an intermediate compound (20a), 5-cyano-4-methylseleno-2-phenyl-1,3-oxazine-6-thione. Some substituted benzoic acids were converted into the corresponding thiazinones (21). The results are summarized in Table 5.

The structure of compound (21a) was assigned from the isolation of 5 -cyanomethyl-1,3-diphenyl-1 H -1,2,4-triazole by reaction of (21a) with phenylhydrazine in the usual way. The triazole can be formed with loss of carbonyl sulphide and

Experimental

Microanalyses were performed with a Perkin-Elmer 240 elemental analyser at the Analytical Center of Chiba University. I.r. spectra were recorded on a Hitachi 215 spectrometer. ${ }^{1} \mathrm{H}$ N.m.r. spectra were determined with Japan Electron Optics Lab. (JEOL) JNM-FX-270, MH-100, and C-60 HL spectrometers. ${ }^{13} \mathrm{C}$ N.m.r. spectra were recorded with a JEOL JNM-FX-270 spectrometer. Chemical shifts are given in p.p.m. downfield from $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ as internal standard. U.v. spectra
were measured with a Hitachi EPS-3T spectrophotometer. Mass spectra were measured on a Hitachi M-60 spectrometer at an ionizing energy of 70 eV . Silica gel used in column chromatography was Wakogel C-200, and silica gel used for t.l.c. was Wakogel B-5F. Special grade phosphorus pentaoxide was purchased from Wako Pure Chemical Industries Ltd. Benzene and chloroform were purified by standard procedures, and tetrahydrofuran (THF) was distilled from benzophenone ketyl. Compound (1) was prepared by our previous method. ${ }^{3}$

2-Cyano-3-hydroxy-3-(methylthio)acrylamide (2).-To a mixture of sodium hydride (60% oil dispersion; $12 \mathrm{~g}, 300 \mathrm{ml}$) (free from oil) and dry THF (150 ml) were added successively cyanoacetamide ($6.3 \mathrm{~g}, 75 \mathrm{mmol}$), copper(I) iodide ($7.2 \mathrm{~g}, 37.5$ mmol), and $S S$-dimethyl dithiocarbonate ${ }^{13}(9.16 \mathrm{~g}, 75 \mathrm{mmol})$. The mixture was stirred at room temperature for 40 h . Then, a mixture of sodium hydride ($2 \mathrm{~g}, 50 \mathrm{mmol}$), $S S$-dimethyl dithiocarbonate ($2.44 \mathrm{~g}, 20 \mathrm{mmol}$), and dry THF (30 ml) was added to the reaction mixture. After being refluxed for 3 h , the mixture was quenched with water, washed with benzene, and filtered through Celite. The filtrate was acidified with dil. HCl and extracted with ethyl acetate. The extract was evaporated under reduced pressure to give a yellow material (10 g). Recrystallization from chloroform gave the title compound (2) as white prisms ($9.3 \mathrm{~g}, 78 \%$), m.p. $>340^{\circ} \mathrm{C}$ (Found: C, 37.85; H, 3.8; N, 17.7. $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 37.97 ; \mathrm{H}, 3.82 ; \mathrm{N}, 17.71 \%$); $v_{\text {max. }}(\mathrm{KBr}) 3310 \mathrm{br}, 3160 \mathrm{vs}, 2200 \mathrm{~s}$, and $1680 \mathrm{~s} \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}(60$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) 7.5\left(3 \mathrm{H}\right.$, br, NH_{2} and OH$)$ and 2.4 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$).

3-Anilino-2-cyano-3-(methylthio)acrylamide (3a).-A mixture of 2-cyano-3,3-bis(methylthio)acrylamide ${ }^{8}$ ($3.8 \mathrm{~g}, 20 \mathrm{mmol}$), aniline ($2 \mathrm{ml}, 22 \mathrm{mmol}$), and ethanol (40 ml) was refluxed overnight. The white crystals which formed were collected, washed with ethanol, and recrystallized from ethanol to give the title compound (3a) as white needles ($4.6 \mathrm{~g}, 99 \%$), m.p. $147-149{ }^{\circ} \mathrm{C}$ (Found: C, 56.6; H, 4.8; N, 17.9. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$ requires $\mathrm{C}, 56.63$; $\mathrm{H}, 4.75 ; \mathrm{N}, 18.01 \%$; $\mathrm{v}_{\text {max. }}$. (KBr) $3450 \mathrm{~s}, 3390 \mathrm{vs}, 3300 \mathrm{~s}, 3240 \mathrm{~s}$, $3170 \mathrm{vs}, 2200 \mathrm{vs}$, and $1650 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}-\right.$ $\mathrm{CD}_{3} \mathrm{COCD}_{3}$) $12.6(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.4(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 6.42(2 \mathrm{H}, \mathrm{br}$, NH_{2}), and $2.2(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}) ; m / z 233\left(M^{+}\right)$.

3-Butylamino-2-cyano-3-(methylthio)acrylamide (3b).-A mixture of 2-cyano-3,3-bis(methylthio)acrylamide ($1.8 \mathrm{~g}, 10$ mmol), n-butylamine ($1 \mathrm{ml}, 11 \mathrm{mmol}$), and ethanol (20 ml) was worked up in a similar manner to that described above. The white crystals produced were recrystallized from ethanol to give the title compound (3b) as white needles $(2.1 \mathrm{~g}, 98 \%$), m.p. $81-83{ }^{\circ} \mathrm{C}$; $v_{\text {max. }}$. (KBr) $3350 \mathrm{~s}, 3180 \mathrm{~s}, 2950,2920 \mathrm{w}, 2200 \mathrm{~s}$, $1660 \mathrm{vs}, 1600 \mathrm{vs}$, and $1570 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.9$ ($1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$), $5.95\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 3.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}\right), 2.65$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$), $1.5\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, and $1.0(3 \mathrm{H}, \mathrm{m}, \mathrm{Me}) ; \mathrm{m} / \mathrm{z}$ $213\left(M^{+}\right)$.

3-Amino-2-cyano-3-(methylthio)acrylamide (3c).-A mixture of 2-cyano-3,3-bis(methylthio)acrylamide ($0.95 \mathrm{~g}, 5 \mathrm{mmol}$), ammonium benzoate ($0.82 \mathrm{~g}, 6 \mathrm{mmol}$), and ethanol (10 ml) was worked up in a similar manner to that described above. The product was recrystallized from ethanol to give the title compound (3c) as white needles ($0.6 \mathrm{~g}, 71 \%$), m.p. $200-201^{\circ} \mathrm{C}$; $v_{\text {max. }}$. KBr) $3440 \mathrm{~s}, 3340 \mathrm{vs}, 3260 \mathrm{~s}, 3100 \mathrm{~s}, 2200 \mathrm{vs}, 1650 \mathrm{~s}$, and $1600 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) 8-9(2$ $\left.\mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 6.57\left(2 \mathrm{H}, \mathrm{br}, \mathrm{CONH}_{2}\right)$, and $2.5(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}) ; m / z$ $157\left(M^{+}\right)$.

5-Cyano-4-methylthio-2-phenyl-1,3-oxazin-6-one (7a).-A 30 ml two-necked round-bottom flask, equipped with a reflux condenser and a Teflon-coated magnetic bar, was dried in
vacuo and then flushed with argon. To this flask were added sequentially phosphorus pentaoxide ($2 \mathrm{~g}, 7 \mathrm{mmol}$), hexamethyldisiloxane ($4 \mathrm{ml}, 20 \mathrm{mmol}$), and dry chloroform (10 ml). The mixture was heated at reflux for 0.5 h under argon until the solution was clear, and then evaporated under reduced pressure to remove most of the solvent. To the resultant liquid were added benzoic acid ($249 \mathrm{mg}, 2 \mathrm{mmol}$) and the amide (2) (317 $\mathrm{mg}, 2 \mathrm{mmol}$). The mixture was stirred and heated at $120^{\circ} \mathrm{C}$ for 2 h , and then quenched with water. The orange crystals produced were collected, washed with ethanol, and recrystallized from benzene to give the title oxazinone (7a) as orange prisms ($376 \mathrm{mg}, 77 \%$), m.p. $195-196{ }^{\circ} \mathrm{C}$ (Found: C, 58.9; H, 3.3; N, 11.5. $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 59.0 ; \mathrm{H}, 3.30 ; \mathrm{N}, 11.47 \%$); $v_{\text {max. }}(\mathrm{KBr}) 3050 \mathrm{w}, 2920 \mathrm{w}, 2200 \mathrm{~s}$, and $1740 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}(60$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $8.3(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.7(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and 2.8 (3 H, s, SMe); $m / z 244\left(M^{+}\right)$.

Compounds ($\mathbf{7 b}-\mathbf{f}$) were prepared in the same method as described in the preparation of (7a).

5-Cyano-2-(p-methoxyphenyl)-4-methylthio-1,3-oxazin-6-one (7b): orange crystals, m.p. 201-203 ${ }^{\circ} \mathrm{C}$ (Found: C, 57.2; H, 3.7; $\mathrm{N}, 10.1$. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, 56.92; H, 3.67; N, 10.21%); $v_{\text {max }} .(\mathrm{KBr}) 3060 \mathrm{w}, 2920 \mathrm{~m}, 2810 \mathrm{~m}, 2200 \mathrm{~s}$, and $1740 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.25(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{ArH}), 7.0(2 \mathrm{H}, \mathrm{d}, J 9$ $\mathrm{Hz}, \mathrm{ArH}), 3.9(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO})$, and $2.8(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe})$; $m / z 274\left(M^{+}\right)$.

2-(p-Chlorophenyl)-5-cyano-4-methylthio-1,3-oxazin-6-one (7c): orange crystals, m.p. $201-203{ }^{\circ} \mathrm{C}$ (Found: C, 51.8 ; H, 2.6; $\mathrm{N}, 10.0 . \mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{2}$ requires C, 51.71 ; $\mathrm{H}, 2.53$; $\mathrm{N}, 10.05 \%$); $v_{\text {max. }} .(\mathrm{KBr}) 3050 \mathrm{~m}, 2900 \mathrm{w}, 2210 \mathrm{~s}$, and $1740 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}(60$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.2(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{ArH}), 7.5(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}$, ArH), and 2.8 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$); m/z 278 (M^{+}).

5-Cyano-4-methylthio-2-(2-naphthyl)-1,3-oxazin-6-one (7d): yellow crystals, m.p. $263-264{ }^{\circ} \mathrm{C}$ (Found: C, 65.4; H, 3.5; N, 9.4. $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 65.29 ; \mathrm{H}, 3.42 ; \mathrm{N}, 9.52 \%$); $v_{\text {max. }}$ (KBr) $3040,3000 \mathrm{w}, 2900 \mathrm{w}, 2210 \mathrm{~s}$, and $1750 \mathrm{vs} \mathrm{cm}{ }^{-1}$; $\delta_{\mathrm{H}}(60 \mathrm{MHz}$; CDCl_{3}) 8.9-7.6 ($7 \mathrm{H}, \mathrm{m}$, naphthyl) and $2.85(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe})$; m / z $294\left(M^{+}\right)$.

5-Cyano-4-methylthio-2-(p-nitrophenyl)-1,3-oxazin-6-one (7e): orange crystals, m.p. $213-214{ }^{\circ} \mathrm{C}$ (Found: C, 49.8 ; H, 2.5; $\mathrm{N}, 14.4 . \mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 49.83 ; \mathrm{H}, 2.44 ; \mathrm{N}, 14.53 \%$); $v_{\text {max }}(\mathrm{KBr}) 3080 \mathrm{~m}, 2800 \mathrm{~m}, 2210 \mathrm{~s}$, and $1765 \mathrm{vs} \mathrm{cm}{ }^{-1}$; $\delta_{\mathrm{H}}(60$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.5(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $2.8(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}) ; m / z 289$ $\left(M^{+}\right)$.

5-Cyano-2-(2-furyl)-4-methylthio-1,3-oxazin-6-one (7f): yellow crystals, m.p. $190-191^{\circ} \mathrm{C}$ (Found: C, $51.5 ; \mathrm{H}, 2.7$; N, 11.8. $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 51.28 ; \mathrm{H}, 2.58 ; \mathrm{N}, 11.96 \%$); $v_{\text {max }}$. KBr) $3090 \mathrm{~s}, 2200 \mathrm{~s}$, and $1740 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.8(1 \mathrm{H}, \mathrm{d}, J 1.7 \mathrm{~Hz}$, furyl), $7.6(1 \mathrm{H}$, d, $J 3.6 \mathrm{~Hz}$, furyl), 6.7 ($1 \mathrm{H}, \mathrm{m}$, furyl), and $2.76(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}) ; m / z 234\left(\mathrm{M}^{+}\right)$.

Pyridinium Salt of N-Benzoyl-2-cyano-3-hydroxy-3-(methylthio)acrylamide (8).-A mixture of compound (2) ($\mathbf{4 7 4} \mathrm{mg}, 3$ mmol), chloroform (10 ml), and pyridine (0.7 ml) was stirred for 10 min at room temperature. To the mixture was added benzoyl chioride ($1 \mathrm{ml}, 9 \mathrm{mmol}$). The resultant mixture was stirred for 5 min at the same temperature. The white crystals produced were collected and washed with ethanol, to give the title salt as white crystals, m.p. $175-176^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 59.8 ; \mathrm{H}$, 4.4; $\mathrm{N}, 12.25 . \mathrm{C}_{1}{ }_{7} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 59.81 ; \mathrm{H}, 4.43$; N , 12.31%); $v_{\text {max. }}$ (KBr) $3040 \mathrm{w}, 2800-2900 \mathrm{~m}, 2180 \mathrm{~s}, 1690 \mathrm{vs}$, and $1640 \mathrm{vs} \mathrm{cm}^{-1}$.

The pyridine salt was treated with dil. HCl to give (quantitatively) pale yellow crystals of N -benzoyl-2-cyano-3-hydroxy-3-(methylthio)acrylamide (9), m.p. 145-146 ${ }^{\circ} \mathrm{C}$ (Found: C, 54.9; $\mathrm{H}, 3.8 ; \mathrm{N}, 10.7 . \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, $54.95 ; \mathrm{H}, 3.84 ; \mathrm{N}$, 10.68%); $v_{\text {max. }}$ (KBr) $3400 \mathrm{br}, 3040 \mathrm{w}, 2980 \mathrm{~s}, 2900 \mathrm{~m}, 2200 \mathrm{~s}$, 1680 vs , and $1640 \mathrm{vs} \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 13.5(1 \mathrm{H}, \mathrm{br}$, NH or OH), 13.2 ($1 \mathrm{H}, \mathrm{br}, \mathrm{OH}$ or NH), 8.1 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.7 (3 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}$), and 2.5 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$).

Conversion of Amide (9) into oxazinone (7a).-To a solution of PPSE prepared from phosphorus pentaoxide (0.5 g), hexamethyldisiloxane (1 ml), and chloroform (5 ml) by the same method as described in the preparation of compound (7a) was added the amide (9) ($136 \mathrm{mg}, 0.52 \mathrm{mmol}$). The mixture was stirred and heated at $120^{\circ} \mathrm{C}$ for 3 h and then quenched with water. The crystals obtained were collected and washed with ethanol to give the oxazinone (7a) as an orange powder (50 mg , 40%).

Reaction of Oxazinone (7a) with Phenylhydrazine.-A mixture of compound (7 a) $\mathbf{(6 8 . 6 \mathrm { mg } , 0 . 2 8 \mathrm { mmol }) \text { , phenylhydrazine (} 0 . 0 2 7}$ ml), and dry benzene (2 ml) was stirred and refluxed for 1 h . To the chilled mixture was added dil. HCl . The organic layer was separated and evaporated to give a yellow oil, which was purified in the usual way by t.l.c. with ethyl acetate-hexane (1:1) as eluant to afford 5-cyanomethyl-1,3-diphenyl-1 H-1,2,4triazole ${ }^{6}$ in 99% yield.

5-Cyano-6-methylthio-2,3-diphenylpyrimidin-4(3H)-one (14a) and 5-Cyano-6-methylthio-1,2-diphenylpyrimidin-4(1H)-one (15a).-The reaction was performed at $150-160^{\circ} \mathrm{C}$ for 3 h under the same conditions as described in the preparation of compound (7a), except that the anilino amide (3a) was used in place of compound (2). The orange crystalline product was separated in the usual way by t.l.c. with ethyl acetate-benzene (1:4) as eluant; compound (14a) was obtained as the faster moving product in 49% yield, and its isomer (15a) as the slower moving product in 11% yield; compound (14 a): orange crystals (from EtOH), m.p. $236-237^{\circ} \mathrm{C}$ (Found: C, 67.8; H, 4.2; N, 13.2 . $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$ requires $\mathrm{C}, 67.69 ; \mathrm{H}, 4.10 ; \mathrm{N}, 13.16 \%$); $v_{\text {max }}$. (KBr) $3050 \mathrm{w}, 2220 \mathrm{~s}$, and $1680 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-$ $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$) $8.05(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.65(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.35(5 \mathrm{H}$, s, Ph), and 2.7 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$); m/z 319 (M^{+}). Compound (15a): orange crystals (from EtOH), m.p. 244-245 ${ }^{\circ} \mathrm{C}$ (Found: C, $67.8 ; \mathrm{H}, 4.15 ; \mathrm{N}, 13.2 \%$); $\mathrm{v}_{\text {max }}$ (KBr) $3040 \mathrm{w}, 2220 \mathrm{~s}$, and 1645 vs $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) 7.35(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.1$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), and 2.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$); m/z $319\left(M^{+}\right.$).

Compounds (14b), (15b), (14c), and (15c) were prepared by the same method, using the appropriate carboxylic acid.

5-Cyano-6-methylthio-2-(p-nitrophenyl)-3-phenylpyrimidin$4(3 \mathrm{H})$-one (14b): orange crystals (from EtOH), m.p. 268$269^{\circ} \mathrm{C}$, yield 54% (Found: C, $59.2 ; \mathrm{H}, 3.45$; N, 15.1. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 59.33: \mathrm{H}, 3.32 ; \mathrm{N}, 15.38 \%$); $v_{\text {max. }}(\mathrm{KBr}) 3050 \mathrm{w}, 2900 \mathrm{w}, 2220 \mathrm{~m}$, and $1670 \mathrm{~s} \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(60$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.1(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{ArH}), 7.5(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}$, $\mathrm{ArH}), 7.4(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.1(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, and $2.67(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe})$; $m / z 364\left(M^{+}\right)$.

5-Cyano-6-methylthio-2-(p-nitrophenyl)-1-phenylpyrimi-din-4($1 H$)-one (15 b): orange crystals (from EtOH), m.p. 213$214^{\circ} \mathrm{C}$, yield 24%; $\mathrm{v}_{\text {max. }}$. (KBr) $3040 \mathrm{~m}, 2900,2840 \mathrm{~m}, 2220 \mathrm{~m}$, and $1640 \mathrm{~s} \mathrm{~cm}^{-1} ; m / z 364$ (M^{+}).

2-(p-Chlorophenyl)-5-cyano-6-methylthio-3-phenylpyrimidin$4(3 \mathrm{H})$-one (14 c): orange crystals (from EtOH; 47%), m.p. 197$198{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 61.1 ; \mathrm{H}, 3.4 ; \mathrm{N}, 11.9 . \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS}$ requires $\mathrm{C}, 61.09 ; \mathrm{H}, 3.42 ; \mathrm{N}, 11.88 \%$; ; $\mathrm{v}_{\text {max. }}(\mathrm{KBr}) 3030 \mathrm{w}$, $2930 \mathrm{w}, 2900 \mathrm{w}, 2210 \mathrm{~s}$, and $1670 \mathrm{vs} \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.1-7.4(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $2.67(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}) ; m / z 353$ (M^{+}).

2-(p-Chlorophenyl)-5-cyano-6-methylthio-1-phenylpyr-imidin- $4(1 H)$-one (15 c): orange crystals (from $\mathrm{EtOH} ; 38 \%$), m.p. $173-174^{\circ} \mathrm{C}$; $v_{\text {max. }}(\mathrm{KBr}) 3050 \mathrm{w}, 2900 \mathrm{w}, 2180 \mathrm{~s}$, and $1680 \mathrm{~s} \mathrm{~cm}^{-1} ; m / z 353\left(M^{+}\right)$.

3-Anilino-2-cyano-3-methylthioacrylonitrile (16).-An equimolar mixture of 2-cyano-3,3-bis(methylthio)acrylonitrile and aniline was refluxed in ethanol. Usual work-up gave the title
compound as white needles (from EtOH; 89\%), m.p. 171$172{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 61.4 ; \mathrm{H}, 4.3 ; \mathrm{N}$, 19.6. $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{~S}$ requires C, $61.37 ; \mathrm{H}, 4.21 ; \mathrm{N}, 19.52 \%$; $v_{\text {max. }}$ (KBr) $3280 \mathrm{vs}, 3000 \mathrm{~m}$, $2200 \mathrm{vs}, 2180 \mathrm{vs}$, and $1590 \mathrm{~s} \mathrm{~cm}^{-1} ; m / z 215\left(M^{+}\right)$.

Conversion of Compound (16) into the Pyrimidinone (14a).-Condensation of the dinitrile (16) with benzoic acid in the presence of PPSE was carried out in the usual way to give pyrimidinone (14a) in 62% yield.

3-Anilino- N -benzoyl-2-cyano-3-(methylthio)acrylamide (17).-A mixture of compound (3a) ($699 \mathrm{mg}, 3 \mathrm{mmol}$), sodium hydride (60% oil dispersion; $450 \mathrm{mg}, 9 \mathrm{mmol}$), and THF (10 ml) was heated at $60^{\circ} \mathrm{C}$ for 1 h . To the chilled mixture was added benzoyl chloride ($0.7 \mathrm{ml}, 6 \mathrm{mmol}$). The resultant mixture was stirred at room temperature for 8 h then quenched with water and extracted with benzene. The extract was evaporated under reduced pressure to give yellow crystals. Recrystallization from ethanol gave the title secondary amide as yellow crystals $\left(687 \mathrm{mg}, 68 \%\right.$), m.p. $205-206{ }^{\circ} \mathrm{C}$ (Found: C, 64.0; H, 4.5; N, 12.5. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 64.08 ; \mathrm{H}, 4.48 ; \mathrm{N}, 12.45 \%$); $v_{\text {max }}$. KBr) $3400 \mathrm{~s}, 3050 \mathrm{~m}, 2180 \mathrm{vs}$, and $1690 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}(60$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) 13.6(1 \mathrm{H}, \mathrm{br}, \mathrm{NHCO}), 8.0(1 \mathrm{H}, \mathrm{br}$, NH), $7.0-7.5(10 \mathrm{H}, \mathrm{m}, 2 \mathrm{Ph})$, and $2.1(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe})$; $m / z 337$ (M^{+}).

Compound (17) was quantitatively converted into the pyrimidinone (15a) in the presence of PPSE.

3-Benzamido-2-cyano-3-methylthio- N -phenylacrylamide (18).-A mixture of compound (14 a) ($45 \mathrm{mg}, 0.14 \mathrm{mmol}$), ethanol (5 ml), and 10% aqueous $\mathrm{NaOH}(1 \mathrm{ml})$ was stirred at room temperature for 2 h . The white crystals produced were collected and washed with ethanol to give the diamide (18) as white crystals (m.p. $207^{\circ} \mathrm{C}$) in nearly quantitative yield (Found: $\mathrm{C}, 63.9 ; \mathrm{H}, 4.6 ; \mathrm{N}, 12.3 . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 64.08 ; \mathrm{H}, 4.48$; $\mathrm{N}, 12.45 \%$); $v_{\text {max. }}(\mathrm{KBr}) 3280 \mathrm{~s}, 2200 \mathrm{~s}$, and $1710 \mathrm{~s} \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(60$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.1(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.9(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.7-7.2(8 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 3.9(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, and $2.7(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}) ; \mathrm{m} / \mathrm{z} 337\left(\mathrm{M}^{+}\right)$.

Conversion of diamide (18) into the pyrimidinone (14a) was performed in the usual way with PPSE (yield 99\%).

S-Methyl Cyano(phenyl)thioacetate (4a).-A mixture of phenylacetonitrile ($1.17 \mathrm{~g}, 10 \mathrm{mmol}$), $S S$-dimethyl dithiocarbonate ($1.34 \mathrm{~g}, 11 \mathrm{mmol}$), sodium hydride $(60 \%$ oil dispersion; 1 g) (free from oil), and THF (30 ml) was stirred at room temperature for 2 days, and then quenched with water. The aqueous solution was washed with benzene, acidified with dil. HCl , and extracted with benzene. The extract was dried over sodium sulphate and evaporated under reduced pressure to give the title thioester as a yellow oil, which was, in turn, purified on a short column of silica gel with benzene as eluant to give a yellow oil ($1.2 \mathrm{~g}, 62 \%$), b.p. $110^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$ (Found: C, 62.6; H, 4.8; $\mathrm{N}, 7.3 \mathrm{C}_{10} \mathrm{H}_{9}$ NOS requires $\mathrm{C}, 62.80 ; \mathrm{H}, 4.74 ; \mathrm{N}, 7.32 \%$); $v_{\text {max. }}$. (neat) $3040,3020 \mathrm{~s}, 2900 \mathrm{~s}, 2250 \mathrm{~s}$, and $1680 \mathrm{vs} \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}$ ($\left.60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.45(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 4.80(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$, and $2.35(3$ H, s, SMe); m/z 191 (M^{+}).

S-Methyl 2-Cyanothiopropionate (4b).-To a mixture of lithium di-isopropylamide (LDA) (20 mmol) in THF (20 ml) prepared in the usual way was added propionitrile ($0.55 \mathrm{~g}, 10$ mmol) and $S S$-dimethyl dithiocarbonate ($1.34 \mathrm{~g}, 11 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 6 h and then at room temperature overnight. The reaction mixture was quenched with water and purification was carried out by the same sequence as above; the title thioester was obtained as a yellow oil $\left(0.58 \mathrm{~g}, 45 \%\right.$), b.p. $30^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$ (Found: C, 46.5; H, 5.4; N, 10.8. C ${ }_{5} \mathrm{H}_{7}$ NOS requires C, 46.49; H, $5.46 ; \mathrm{N}, 10.84 \%$); $v_{\text {max. }}($ (neat) $2990,2920 \mathrm{~s}, 2225 \mathrm{~s}$, and 1690 vs
$\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.92(1 \mathrm{H}, \mathrm{q}, J 4 \mathrm{~Hz}, \mathrm{CH}), 2.46(3 \mathrm{H}$, $\mathrm{s}, \mathrm{SMe})$, and $1.61(3 \mathrm{H}, \mathrm{d}, J 4 \mathrm{~Hz}, \mathrm{Me})$; $m / z 129\left(M^{+}\right)$.

4-Methylthio-2,5-diphenyl-1,3-oxazin-6-one (13a).-To neat PPSE, prepared in the usual way from phosphorus pentaoxide (2 g), hexamethyldisiloxane (4 ml), and benzene (5 ml), was added benzoic acid ($134 \mathrm{mg}, 1.1 \mathrm{mmol}$). After the mixture was stirred for several min, dry benzene (2 ml) containing thioester (4a) ($191 \mathrm{mg}, 1 \mathrm{mmol}$) was added to the mixture and the resultant solution was stirred at $160^{\circ} \mathrm{C}$ for 2 h , and then quenched with water and extracted with chloroform. The extract was dried (sodium sulphate) and evaporated under reduced pressure to give a brown material. Recrystallization from ethanol gave the title compound as yellow needles (85.6 $\mathrm{mg}, 29 \%$), m.p. $192-193^{\circ} \mathrm{C}$ (Found: C, 69.1; H, 4.5; N, 4.8. $\mathrm{C}_{17}{ }_{7} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 69.13 ; \mathrm{H}, 4.44 ; \mathrm{N}, 4.74 \%$); $v_{\text {max }}$. $(\mathrm{K} \mathrm{Br})$ $3050 \mathrm{w}, 2920 \mathrm{w}$, and $1730 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.36$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.58 ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), and 2.65 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$); m/z 295 $\left(M^{+}\right)$.

5-Methyl-4-methylthio-2-phenyl-1,3-oxazin-6-one (13b) was prepared from thioester (4b) by the same procedure as described above, and was obtained as prisms (from EtOH), m.p. 111$112{ }^{\circ} \mathrm{C}$ (Found: C, 61.8; $\mathrm{H}, 4.75$; N, 6.0. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}$ requires C, $61.78 ; \mathrm{H}, 4.75 ; \mathrm{N}, 6.00 \%$); $\mathrm{v}_{\text {max. }} .(\mathrm{KBr}) 3030 \mathrm{w}, 3000 \mathrm{w}$, $2910 \mathrm{w}, 2880 \mathrm{w}$, and $1720 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.18$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.59 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 2.60(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe})$, and $2.00(3 \mathrm{H}$, s, Me); $m / z 233\left(M^{+}\right)$.

Use of Phosphoryl Trichloride and Propylphosphonic Acid Cyclic Anhydride as Condensation Reagents

5-Carbamoyl-4-methylthio-2-phenyl-1,3-oxazin-6-one.-A mixture of compound (2) (0.5 mmol), benzoic acid (0.5 mmol), $\mathrm{POCl}_{3}(1 \mathrm{ml})$, and benzene (2 ml) was refluxed for 3 h . The resultant orange crystals were collected and washed with ethanol to give the title compound as yellow needles (43 mg , 33%) m.p. $257-258^{\circ} \mathrm{C}$ (decomp.) (from $\mathrm{EtOH}-\mathrm{AcOH}$) (Found: C, 54.95; H, 3.85; N, 10.6. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, 54.95 ; H, 3.84 ; N, 10.68%); $v_{\text {max. }}$ (KBr) $3360 \mathrm{~s}, 3130 \mathrm{~s}, 17 \overline{20} \mathrm{vs}$, $1670 \mathrm{~s}, 1590 \mathrm{~s}$, and $1560 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.4(1 \mathrm{H}$, br, NH), 8.3 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.55 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $5.60(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$, and $2.65(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}) ; m / z 262\left(M^{+}\right)$. This compound could be converted into the nitrile (7a) in quantitative yield by treatment with PPSE ($120^{\circ} \mathrm{C} ; 2 \mathrm{~h}$).

When 1-propylphosphonic acid cyclic anhydride was used in the condensation of compound (2) ($120^{\circ} \mathrm{C} ; 3 \mathrm{~h}$), nitrile (7a) was isolated in 48% yield.

3-Anilino-3-methylthio-2-phenylacrylonitrile (5a).-A mixture of phenylacetonitrile ($1.17 \mathrm{~g}, 10 \mathrm{mmol}$), sodium hydride $(60 \%$ oil dispersion; 1 g) free from oil, and THF (50 ml) was refluxed for 2 h and to the mixture was added phenyl isothiocyanate (1.48 g , 11 mmol) at $<0^{\circ} \mathrm{C}$. The resultant mixture was stirred at room temperature for 1 h and then quenched with water. The aqueous layer was washed with benzene and stirred with methyl iodide at room temperature overnight. The reaction mixture was extracted with benzene, and the extract was then dried (sodium sulphate) and evaporated under reduced pressure to give the title acrylonitrile ($2.5 \mathrm{~g}, 94 \%$) as yellow crystals recrystallized as pale yellow crystals (from EtOH) (Found: C, 72.1; H, 5.4; N, 10.5. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 72.15 ; \mathrm{H}, 5.30 ; \mathrm{N}, 10.52 \%$); $v_{\text {max }}(\mathrm{KBr}) 3220 \mathrm{~s}, 3000 \mathrm{w}$, and $2180 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.25(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 6.77(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$, and 2.21 and $1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}, E, Z$ mixture $) ; m / z 266\left(M^{+}\right)$.

3-Anilino-2-methyl-3-methylthioacrylonitrile (5b).-The preparation of compound (5b) was carried out by the same
procedure as mentioned above, but with LDA in place of sodium hydride as base; the title nitrile was obtained as yellow prisms ($2.0 \mathrm{~g}, 99 \%$), m.p. $81--83{ }^{\circ} \mathrm{C}$ (Found: C, $64.55 ; \mathrm{H}, 5.9$; N, 13.7. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 64.67 ; \mathrm{H}, 5.92 ; \mathrm{N}, 13.71 \%$); $v_{\text {max }}$ (neat) $3250 \mathrm{~s}, 3000 \mathrm{w}, 2900 \mathrm{w}, 2830 \mathrm{~m}$, and $2190 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.13(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.55(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 2.45$ and $2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe})$, and 2.05 and $1.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; m / z 204\left(M^{+}\right)$. N.m.r. data showed compound (5b) to be an E, Z mixture.

Ethyl 3-Anilino-2-cyano-3-(methylthio)acrylate (5c).-This compound was prepared by the reaction of aniline with ethyl 3,3-bis(methylthio)-2-cyanoacrylate, which was derived from ethyl cyanoacetate and dimethyl trithiocarbonate; the title ester was obtained as yellow plates ($1.5 \mathrm{~g}, 59 \%$) (from EtOH) m.p. 81 $82{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 59.2 ; \mathrm{H}, 5.35 ; \mathrm{N}, 10.6 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C, $59.52 ; \mathrm{H}, 5.38 ; \mathrm{N}, 10.68 \%$); $v_{\text {max. }}(\mathrm{KBr}) 3140 \mathrm{w}, 3040 \mathrm{w}$, $2950 \mathrm{w}, 2900 \mathrm{w}, 2200 \mathrm{vs}$, and $1660 \mathrm{vs} \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(60 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 11.5(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.28(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 4.20(2 \mathrm{H}, \mathrm{q}, J 4$ $\mathrm{Hz}, \mathrm{CH}_{2}$), $2.39(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe})$, and $1.39(3 \mathrm{H}, \mathrm{t}, J 4 \mathrm{~Hz}, \mathrm{Me}) ; m /=$ $262\left(M^{+}\right)$.

6-Methylthio-2,3,5-triphenylpyrimidin-4(3H)-one (19a).-To a PPSE solution in benzene prepared from phosphorus pentaoxide (2 g), hexamethyldisiloxane (4 ml), and benzene (5 ml) in the usual way were added benzoic acid ($122 \mathrm{mg}, 1 \mathrm{mmol}$) and nitrile (5 a) ($266 \mathrm{mg}, 1 \mathrm{mmol}$). The mixture was refluxed for 2 h , quenched with water, and extracted with benzene. The extract was dried (sodium sulphate) and evaporated under reduced pressure to give brown crystals; recrystallization (EtOH) gave the title ketone as white needles ($259 \mathrm{mg}, 70 \%$), m.p. $236-$ $237{ }^{\circ} \mathrm{C}$ (Found: C, $74.55 ; \mathrm{H}, 5.0 ; \mathrm{N}, 7.5 . \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}$ requires C, $74.57 ; \mathrm{H}, 4.90 \mathrm{~N}, 7.56 \%$); $\mathrm{v}_{\text {max. }}(\mathrm{KBr}) 3040 \mathrm{w}, 2990 \mathrm{w}$, 2920 w , and $1680 \mathrm{vs} \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 7.30(15 \mathrm{H}$, $\mathrm{m}, 3 \times \mathrm{Ph}$), and $2.50(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}) ; m /=370\left(\mathrm{M}^{+}\right)$.

5-Methyl-6-methylthio-2,3-diphenylpyrimidin-4(3H)-one

 (19b) and Ethyl 3,4-Dihydro-6-methylthio-4-oxo-2,3-diphenyl-pyrimidine-5-carboxylate (19c).-These compounds were prepared by the same method as mentioned above, from the corresponding nitrile ($5 \mathbf{b}$ and \mathbf{c}). Ketone ($\mathbf{1 9 b}$): orange needles (from EtOH) ($234 \mathrm{mg}, 76 \%$), m.p. $116-118{ }^{\circ} \mathrm{C}$ (Found: C, 69.9; $\mathrm{H}, 5.2 ; \mathrm{N}, 9.15 . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 70.10 ; \mathrm{H}, 5.23 ; \mathrm{N}$, 9.08%); $v_{\text {max }}(\mathrm{KBr}) 3030 \mathrm{w}, 2940 \mathrm{w}$, and $1660 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}(60$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.85(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.25(8 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 2.60(3$ $\mathrm{H}, \mathrm{s}, \mathrm{SMe})$, and $2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; m /=308\left(\mathrm{M}^{+}\right)$.Ester (19c): white needles (from EtOH) ($256 \mathrm{mg}, 70 \%$), m.p. $179-180^{\circ} \mathrm{C}$ (Found: C, 65.3; H, 5.1; N, 7.6. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, 65.56; H, 4.95; $\mathrm{N}, 7.65 \%$); $\mathrm{v}_{\text {max }}$. $(\mathrm{KBr}) 3050 \mathrm{w}, 2980 \mathrm{w}$, $2920 \mathrm{w}, 2850 \mathrm{w}$, and $1700 \mathrm{vs} \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.10$ $(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 4.28\left(2 \mathrm{H}, \mathrm{q}, J 4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.56(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe})$, and $1.40(3 \mathrm{H}, \mathrm{t}, J 4 \mathrm{~Hz}, \mathrm{Me}) ; m /=366\left(M^{+}\right)$.

2-Cyano-3-mercapto-3-(methylseleno)acrylamide
 (6).-A

 mixture of sodium hydride (free from oil) (16 mmol), cyanoacetamide ($336 \mathrm{mg}, 4 \mathrm{mmol}$), and THF (20 ml) was refluxed for 1 h . The resulting mixture was cooled to $0^{\circ} \mathrm{C}$ and then $\mathrm{Se}, \mathrm{Se}^{\prime}-$ dimethyl thiodiselenocarbonate ${ }^{10}(928 \mathrm{mg}, 4 \mathrm{mmol})$ was added dropwise to the solution. The mixture was stirred for 24 h , quenched with water, washed with benzene, and extracted with ethyl acetate with addition of dil. HCl . The extract was treated with charcoal and then evaporated under reduced pressure to give yellow plates of the selenide (6), ($550 \mathrm{mg}, 62 \%$), m.p. $135-136^{\circ} \mathrm{C}$; $v_{\text {max. }}(\mathrm{KBr}) 3380,3280,3200 \mathrm{~s}, 2200 \mathrm{vs}, 1680$, 1640 vs , and $1540 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.65(1 \mathrm{H}$, $\mathrm{s}, \mathrm{SH}), 6.25$ and $5.75\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right)$, and $2.55(3 \mathrm{H}, \mathrm{s}, \mathrm{SeMe})$. Compound (6) decomposed on attempted recrystallization.Table 6. Atomic co-ordinates of compound (14a). Crystallographic numbering scheme is used

		y	z
Atom	x	y	$0.7125(6)$
$\mathrm{N}(1)$	$0.6113(5)$	$0.4344(1)$	$0.6684(4)$
$\mathrm{C}(2)$	$0.5434(2)$	$0.3174(5)$	$0.5847(9)$
$\mathrm{N}(3)$	$0.5391(2)$	$0.2769(9)$	$0.5412(5)$
$\mathrm{C}(4)$	$0.6081(7)$	$0.3506(1)$	$0.5825(4)$
$\mathrm{C}(5)$	$0.6857(6)$	$0.4587(0)$	$0.6721(3)$
$\mathrm{C}(6)$	$0.6898(6)$	$0.5091(9)$	$0.7124(8)$
$\mathrm{O}(7)$	$0.7506(1)$	$0.6116(4)$	$0.5368(6)$
$\mathrm{C}(8)$	$0.7606(1)$	$0.5306(9)$	$0.5002(1)$
$\mathrm{N}(9)$	$0.8201(0)$	$0.5884(2)$	$0.4286(6)$
$\mathrm{S}(10)$	$0.5985(9)$	$0.3065(0)$	$0.4053(2)$
$\mathrm{C}(11)$	$0.4894(0)$	$0.1620(9)$	$0.7998(0)$
$\mathrm{C}(12)$	$0.6052(7)$	$0.4970(0)$	$0.8698(0)$
$\mathrm{C}(13)$	$0.6905(3)$	$0.4704(6)$	$0.9526(7)$
$\mathrm{C}(14)$	$0.6869(0)$	$0.5358(6)$	$0.9647(2)$
$\mathrm{C}(15)$	$0.5991(2)$	$0.6259(8)$	$0.8947(3)$
$\mathrm{C}(16)$	$0.5148(1)$	$0.6506(9)$	$0.8104(9)$
$\mathrm{C}(17)$	$0.5178(5)$	$0.5880(1)$	$0.7136(3)$
$\mathrm{C}(18)$	$0.4679(0)$	$0.2307(6)$	$0.7997(8)$
$\mathrm{C}(19)$	$0.4978(2)$	$0.1697(9)$	$0.8369(4)$
$\mathrm{C}(20)$	$0.4269(5)$	$0.0805(6)$	$0.7885(0)$
$\mathrm{C}(21)$	$0.3253(5)$	$0.0490(4)$	$0.7020(9)$
$\mathrm{C}(22)$	$0.2962(5)$	$0.1066(0)$	$0.6647(2)$

5-Cyano-4-methylseleno-2-phenyl-1,3-thiazin-6-one (21a).To a PPE solution in chloroform [PPE (5 ml) and CHCl_{3} (7 $\mathrm{ml})$] were added benzoic acid ($200 \mathrm{mg}, 1.65 \mathrm{mmol}$) and selenide (6) ($364 \mathrm{mg}, 1.65 \mathrm{mmol}$). The mixture was refluxed for 2 h and then most of the solvent was evaporated off to give a deep red oil, which crystallized under ethanol ($2-3 \mathrm{ml}$) in a refrigerator. The resultant brown crystals were collected to give 5 -cyano-4-methylseleno-2-phenyl-1,3-oxazine-6-thione (20a) (151 mg , 30%). The filtrate was neutralized with aqueous sodium hydrogen carbonate and then extracted with benzene. Evaporation of the extract gave the title thiazinone (21a) ($184 \mathrm{mg}, 36 \%$).

Oxazinethione (20a): yellow crystals (Found: C, 47.0; H, 2.8; $\mathrm{N}, 9.4 . \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OSSe}$ requires $\mathrm{C}, 46.91 ; \mathrm{H}, 2.62 ; \mathrm{N}, 9.12 \%$); $v_{\text {max }}(\mathrm{KBr}) 3040 \mathrm{w}, 2900 \mathrm{w}, 2200 \mathrm{w}, 1590 \mathrm{~m}, 1550 \mathrm{vs}$, and $1440 \mathrm{vs} \mathrm{cm}{ }^{-1} ; m / z 308\left(M^{+}\right)$.

Thiazinone (21a): yellow crystals (from benzene), m.p. 211$213^{\circ} \mathrm{C}$ (Found: C, 46.9; H, 2.6; N, 9.2\%); $v_{\text {max. }}(\mathrm{KBr}) 3040 \mathrm{w}$, $2900 \mathrm{~m}, 1640 \mathrm{vs}, 1490 \mathrm{vs}$, and $1440 \mathrm{vs} \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 8.0(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.6(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, and $2.7(3 \mathrm{H}, \mathrm{s}, \mathrm{SeMe})$; $m / z 308\left(M^{+}\right)$.

Conversion of Compound (21a) into 5-Cyanomethyl-1,3-di-phenyl-1H-1,2,4-triazole.-A mixture of selenide (21a) (35 mg , 0.11 mmol), phenylhydrazine (0.06 ml), and dry benzene (1.5 ml) was refluxed for 1.5 h . The reaction mixture was evaporated under reduced pressure to give a red oil, which was purified by t.l.c. with ethyl acetate-hexane $(1: 2)$ as eluant in 95% yield. Its i.r. spectrum was superposable on that of an authentic specimen of 5-cyanomethyl-1,3-diphenyl-1H-1,2,4-triazole.

5-Cyano-4-methylseleno-2-(2-naphthyl)-1,3-thiazin-6-one

 (21b) and 5-Cyano-2-(p-methoxyphenyl)-4-methylseleno-1,3-thiazin-6-one (21c).-These compounds were prepared by the same method as described in the preparation of (21a), but with the corresponding carboxylic acid. Thiazinone (21b): yellow crystals (from EtOH) $\left(425 \mathrm{mg}, 72 \%\right.$), m.p. $224-225{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 53.8 ; \mathrm{H}, 2.85 ; \mathrm{N}, 7.9 . \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2}$ OSSe requires $\mathrm{C}, 53.79 ; \mathrm{H}$,2.82; $\mathrm{N}, 7.84 \%$); $v_{\text {max. }}(\mathrm{KBr}) 3060 \mathrm{w}, 2950 \mathrm{w}, 2220 \mathrm{~m}, 1650 \mathrm{vs}$ 1510 vs , and $1460 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.9(1 \mathrm{H}, \mathrm{s}$, ArH), $7.9-8.3(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.5-7.8(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and 2.8 (3 $\mathrm{H}, \mathrm{s}, \mathrm{Me}) ; m /=358\left(M^{+}\right)$.

Thiazinone (21c): orange powder (from EtOH) (296 mg , 53%), m.p. 208- $209{ }^{\circ} \mathrm{C}$ (Found: C, 46.6; H, 3.3; N, 8.4. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SSe}$ requires $\mathrm{C}, 46.30 ; \mathrm{H}, 2.99 ; \mathrm{N}, 8.31 \%$); $v_{\text {max }}(\mathrm{KBr}) 3060 \mathrm{w}, 2930 \mathrm{~m}, 2200 \mathrm{~m}, 1640 \mathrm{vs}, 1600 \mathrm{~s}$, and 1490 vs $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.0(2 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}), 7.3(2 \mathrm{H}, \mathrm{dd}$, $\mathrm{ArH})$, 3.9 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), and $2.7(3 \mathrm{H}, \mathrm{s}, \mathrm{SeMe}) ; m / z 338\left(\mathrm{M}^{+}\right)$.

5-Cyano-6-methylseleno-2-phenyl-1,3-thiazin-4-one (22).-To a mixture of compound (6) ($485 \mathrm{mg}, 2.1 \mathrm{mmol}$), pyridine (0.5 ml), and chloroform (4 ml) was added benzoyl chloride (0.7 ml). The resulting mixture was refluxed for 2 h and then evaporated under reduced pressure to give a red oil, to which ethanol and water were added to give a brown precipitate ($371 \mathrm{mg}, 58 \%$). Recrystallization from ethanol gave brown crystals of the title thiazinone, m.p. 173-174 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 47.2; H, 2.7; $\mathrm{N}, 9.2 . \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OSSe}$ requires $\mathrm{C}, 46.91 ; \mathrm{H}, 2.62 ; \mathrm{N}, 9.12 \%$); $v_{\text {max }}(\mathrm{KBr}) 3040 \mathrm{w}, 2900 \mathrm{w}, 2200 \mathrm{~s}, 1650 \mathrm{vs}$, and $1550 \mathrm{vs} \mathrm{cm}{ }^{-1}$; $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.1(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.6(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, and 2.7 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SeMe}$); $m / z 308\left(\mathrm{M}^{+}\right.$).

X-Ray Crystal Structure Determination of Compound (14a).Crystals were prepared by slow evaporation of an ethanolic solution.

Crystal data. $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}, M=319.37$, monoclinic, $a=$ 12.861(5), $b=8.093(2), c=15.352(5) \AA, \beta=101.82(3)^{\circ}, V=$ $1564.0 \AA^{3}$, space group $P 2_{1} / n, Z=4, D_{x}=1.356 \mathrm{~g} \mathrm{~cm}^{-1}$.

Data collection and processing. An AFC5 diffractometer was used, in $\omega / 2 \theta$ mode with scan speed $4.0^{\circ} \mathrm{min}^{-1}$; graphitemonochromated $\mathrm{Cu}-K_{\alpha}$ radiation was used; 3719 reflections were measured (2θ range $3^{\circ} \leq 2 \theta \leq 155^{\circ},+h,+k, \pm l$) 2280 were given a unique absorption correction (average transmission factor 0.14), giving 2016 reflections with $I>2 \sigma(I)$.

Structure analysis and refinement. The structure was solved by the UNICS-III system (Library of Computer Center of Tokyo University) based on direct methods, and refined to a final R value of 0.058 ($R_{\mathrm{w}} 0.064$, blocked full-matrix least-squares refinement). Hydrogen atoms were located by the difference Fourier method using practical reflection data. Atomic coordinates are listed in Table 6. Bond lengths and angles and thermal parameters are available as a Supplementary publication SUP No. 56536 (4 pp.)].*

[^2]
References

1 M. Yokoyama, M. Nakamura, T. Imamoto, and K. Yamaguchi, J. Chem. Soc., Chem. Commun., 1981, 560.
2 M. Yokoyama, M. Nakamura, H. Ohteki, T. Imamoto, and K. Yamaguchi, J. Org. Chem., 1982, 47, 1090.
3 M. Yokoyama, M. Kodera, and T. Imamoto, J. Org. Chem., 1984, 49, 74.

4 A preliminary account of some of this work has been published; \mathbf{M}. Yokoyama, H. Hatanaka, and K. Sakamoto, J. Chem. Soc., Chem. Commun., 1985, 279.
5 M. Fieser, 'Reagents for Organic Synthesis,' Wiley, New York, 1982, vol. 10, p. 437.
6 M. Yokoyama, H. Inazawa, M. Kodera, and T. Imamoto, Phosphorus Sulfur, 1983, 16, 187.
7 H. Wissmann and H. Kleiner, Angew'. Chem., Int. Ed. Engl., 1980, 19, 133.

8 T. Takeshima, M. Yokoyama, N. Fukada, and M. Akano, J. Org. Chem., 1970, 35, 2438.
9 A. Takamizawa, Y. Sato, and S. Tanaka, Yakugaku Zasshi, 1965, 85, 298.

10 M. Dräger and G. Gattow, Chem. Ber., 1971, 104, 1429.
11 A. I. Meyers and J. C. Sircar, in 'The Chemistry of the Cyano Group, ed. Z. Rappoport, International Publishers, New York, 1970; p. 341.

12 A. Pelter, K. Smith, M. G. Hutchings, and K. Rowe, J. Chem. Soc., Perkin Trans. I, 1975, 129, 138, 142, and 145.
13 T. Taguchi and M. Nakao, Tetrahedron, 1962, 18, 245.

[^0]: *Large, well shaped monoclinic crystals of compound (14a) were obtained by slow evaporation of an ethanolic solution.

[^1]: † We tentatively assigned the structure of this compound as 3-anilino3 -methylthioacrylonitrile from the following data; white powder, m.p. $73^{\circ} \mathrm{C}$ (from EtOH); $v_{\text {max. }}(\mathrm{KBr}) 3280 \mathrm{vs}, 3040 \mathrm{~m}, 2900 \mathrm{~m}, 2200 \mathrm{vs}$, 1540 vs , and $1510 \mathrm{vs} \mathrm{cm}{ }^{-1} ; \mathrm{m} / \mathrm{z} 190\left(M^{+}\right.$) (Found: C, 63.0; H, 5.3; N, 14.55. Calc. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 63.13 ; \mathrm{H}, 5.30 ; \mathrm{N}, 14.72 \%$).

[^2]: * For details of the Supplementary publications scheme, see Instructions for Authors (1986), J. Chem. Soc., Perkin Trans. I, 1986, Issue 1.

